平均数教案
作为一名教职工,有必要进行细致的教案准备工作,教案有助于学生理解并掌握系统的知识。我们该怎么去写教案呢?下面是小编为大家收集的平均数教案,仅供参考,大家一起来看看吧。
平均数教案1一、 复习铺垫,导入新课
小明利用五一假期,查找了一些有关小动物寿命的数据,并制作成了下面这张统计表。请同学们看大屏幕。
出示动物寿命统计表:
小猫老鼠大象乌龟
寿命/年6251152 提问:看了这张统计表,你发现了什么?(乌龟的寿命最长,老鼠的寿命最短。)
谈话:借助统计,我们常常能发现一些有趣的现象和规律。今天我们继续研究统计。(板书:统计)
【说明:利用动物寿命统计表这一学生感兴趣的材料,复习相关旧知,导入新课,自然贴切,有利于调动学生学习的积极性和主动性。】
二、 创设情境,自主探索
1. 呈现套圈情境。
多媒体演示“套圈比赛”的场景。
谈话:三年级第一小组的男、女生在进行套圈比赛,每人套15个圈,这两张统计图分别表示男生和女生套中的个数。
2. 引入平均数。
出示男、女生套圈成绩统计图。
①提问:从统计图中,你知道了什么?
结合学生的想法,相机进行引导。
想法一:男生有4人,女生有5人。(为比较总数预设)
想法二:男生每人套中的个数,谁来介绍女生没人套中的个数。
②男生套得准一些还是女生套得准一些?你有什么方法?
和你的同桌说说自己的想法。
想法一:女生套得准一些,因为套中的最多的是吴燕。
追问:那套中的个数最少是男生还是女生,所以套中最多的是女生,套中最少的也是女生。用一个人的成绩代表整个队的成绩,这样合适吗?还有其他的方法吗?
想法二:先要求出每个队一共套中了多少个,再比较哪一队套得多(比总数)。
③追问:这种想法的可取之处是已经注意到从整体的方面去比较,但是他们两队人数不相等,这样比公平吗?因为参与套圈的人数不相等,比较总数,是不公平的。
可以怎么办呢?
想法三:分别求出男、女生平均每人套中的个数,哪个队平均每人套中的个数多,哪个队就套得准。(比平均数)。
追问:这样比公平吗?(公平)我们就用这种方法试一试。
【说明:富有启发性的“追问”,旨在引导学生认识到用原有认知结构中数据处理的方式,如比最多、比总数等解决这一问题并不合适,从而引出平均数,并在这一过程中初步感受平均数能表示一组数据的整体水平。】
4. 理解平均数。
④操作:你知道男生平均每人套中多少个圈吗?
请同学们仔细观察统计图,先在小组里讨论怎样找出每个队的平均成绩,再试一试。看哪些小组想的办法又多又好。
学生可能出现两种方法:一是移多补少;二是先求和再求平均数。
⑤引入:男生中谁套中得最多?谁套中得最少?根据这个信息,你有什么好方法求出男生平均每人套中多少个圈?
可以把张明套中的一个移给李小刚,另一个移给陈晓燕。——移多补少
反馈时,学生边讲解移多补少的过程,教师利用课件动态演示。
⑥还有其他的方法吗?
引导列式:6 + 9 + 7 + 6 = 28(个)⑦28表示什么?
28 ÷ 4 = 7(个)⑧7表示什么意思?(图中的红色线条就表示了男生套中的平均数)
⑨你能看出,7比谁套中的个数多?比谁套中的个数少?
小结:平均数比最大的数小,比最小的数大
【说明:将学生对平均数的探求发端于操作,让学生在活动中获得有关平均数的多种求法。】
⑩提问:根据你的发现,谁能猜一猜女生队平均每人套中的个数一定在什么范围之内?(在5~9之间)可以通过哪些方法来验证?
⑾谈话:女生平均每人套中多少个圈呢?你是怎样知道的?请你独立完成在书上。10+4+7+5+4=30(个)
30÷5=6(个)
⑿说说为什么要除以5而不除以4?(女生有5人,要用5人的总数平均分成5份)
⒀现在求出女生平均每人套中6个圈,是不是女生每人都套中6个呢?为什么?
仔细观察女生套圈成绩统计图,得出结论:平均数代表的是一个整体水平。
提问:现在你能判断男生套得准还是女生套得准吗?
⒁在解决男生、女生平均套中多少个圈这两个问题,有什么相同和不同?
相同:⑴求平均数的方法,得出数量关系。(板书:总数÷份数=平均数)
⑵平均数比最大的数小,比最小的数大大。
⑶平均数都是代表了一个整体的水平。
不同:总数不同,人数不同,平均数也不同。
平均数教案2预设目标1、 通过教学,使学生进一步掌握平均数应用题的基本数量关系,能正确求某一种相关数量的平均数。
2、 通过实际计算,进一步知道平均数这个统计量在实际生活中的应用,体会到数学的应用价值。
教学重点进一步掌握平均数应用题的基本数量关系。
教学难点学生择优意识的培养。
教学准备课件、卡片、作业纸。
教学板块教与学的预设(师生活动)设计意图一、 创设情境,引出课题。
一、创设情境,引出课题。
1. 同学们,你们喜欢旅游吗?都去过哪些地方?2. 小明的爸爸今年暑假准备带全家参加春秋旅行社组织的鹿鸣山风景一日游。
安排小明去买票,小明来到旅行社售票处,只见窗口写着:鹿鸣山风景一日游门票价格:甲方案:成人每位120元,小孩每位40元。
乙方案:团体5人以上每位80元。
3. 这两种不同的买票方法你理解吗?你是怎么理解的?如果你是小明,准备怎样买票?二. 引导探索,优化选择。
1. 出示例2,引导学生分析两种方案。
让学生回答问题,引起参与学习的兴趣。
让学生先尝试发表意见,初步知道选择买票的方法不同和参加旅游的人数有关。
教学板块教与学的预设(师生活动)设计意图二、引导探索,优化选择。
三、巩固练习,应用规律。
四、课堂小结,深化提高。
(1) 成人7位,小孩3位,怎样购票合算?按甲方案购票平均每位多少元?(2) 成人3位,小孩7位,怎样购票合算?按甲方案购票平均每位多少元?2.首先,你要明白这两种方案的主要区别是什么?(团体购票与个人购票)3.怎样计算甲方案平均每位多少元?4.如果按甲方案购票,下列各种组队情况平均每人多少元?请大家独立完成作业纸上的表格一。
5.怎样比较两种方案? ……此处隐藏6211个字……教育。
重点、难点:
进一步理解平均数的含义,掌握求平均数的方法,利用有关平均数的知识解决生活实际问题。
教学过程:
一、复习:
1、平均数的定义
2、求平均数的方法
二、课堂练习:
(一)基本训练
师:我们已经学会求平均数的方法,下面请同学们看一道习题。
1、判断:
⑴小华所在班级平均身高131厘米,小明所在班级平均身高135厘米,所以小华比小明矮。( )
⑵全体同学为希望工程捐款,平均每人捐款12元,李洁同学可能捐了15元( )
⑶小明语文、数学、英语三科的平均成绩是93分,小明的语文成绩是93分。( )
2、小丽家这一星期用塑料袋情况如下图:
看图填空:
⑴图中每格代表( );
⑵用塑料袋最少的是( );
⑶平均每天用塑料袋( );
⑷你的建议是( )。
3、以小组为单位(6人一组)统计你家上个月用水情况,制成统计图:
姓名合计
用水量
以小组为单位展示汇报后对学生进行节约用水教育。
(二)拓展训练:(课件出示)
1、一个小组有7个同学,他们的体重分别是:39千克、36千克,38千克、37千克、35千克、40千克、34千克。求这个小组的平均体重是多少千克?
2、商店买来5筐苹果,第一筐重38千克,第一筐重39千克,第一筐重43千克,第一筐重34千克,第一筐重36千克,求平均每筐重多少千克?
3、哪一组的成绩好?
4、选择题:想一想:下面哪个列式才对?
5、小丽期末考试中三门的平均成绩是96分,其中语文是89分,英语是100分,她的数学成绩是多少?
6、小华期末考试中四门的平均成绩是92分,其中语文是96分,科学和英语都是87分,他的数学考了多少分?
7、小芳有36本书,小丽有22本书。小芳送几本书给小丽,他们两人的书就同样多?
三、练习小结。
四、作业
1、复习课本第42、43页的内容。
2、做课本第45页的第5题。
3、收集资料:平均数在日常生活中有哪些应用及作用。
附板书设计:
求平均数的练习课
(一)平均数的定义: 几个不相等数-----→相等的数
(求平均数)
1、移多补少
2、计算方法:
(1)先求出总数----→ 把各个部分数加起来。
(2)再求平均数----→ 总数÷份数=平均数
(二)平均数问题的基本数量关系:
总数÷份数=平均数
平均数×份数=总数
总数÷平均数=份数
平均数教案14一、教学目的
1.使学生了解计算器上有关统计计算的符号.
2.使学生会用计算器求一组数据的平均数、标准差与方差.
3.使学生体会到用计算器统计的省时、省力的优越性.
二、教学重点、难点
重点:掌握用计算器计算平均数、方差的方法.
难点:计算器上符号的准确识读与应用.
三、教学过程
复习提问
1.我们学过哪些计算一组数据的平均数的方法?
2.我们学过哪些计算一组数据的方差与标准差的方法?
引入新课
随着科学的进步,一些先进的计算工具逐步进入千家万户,我们可以用这些计算工具来进行计算.本课我们学习用计算器计算一组数据的平均数与方差的方法.
新课
让学生阅读并在教师指导下计算教材例中两组数据的平均数、标准差与方差.同时,通过应用计算器,了解的作用.
接下来让学生作如下练习:
填空题:
2.计算器中,STAT是____的意思,DATA是____的意思.
3.计算器键盘上,符号σ与书中符号____意义相同,表示一组数据的____.
4.在CZ1206型计算器上设有标准差运算键,而未设____运算键,一般要通过将标准差____得到____.
选择题:
1.通过使用计算器比较两组数据的波动大小,只需通过比较它们的____即可[ ]
A.标准差B.方差
C.平均数D.中位数
2.如果有重复出现的数据,比如有10个数据是11,那么输入时可按[ ]
3.用计算器计算样本91,92,90,89,88的标准差为[ ]
A.0 B.1 C.约1。414 D.2
4.用计算器计算7,8,8,6,5,7,5,4,7,6的平均数、方差分别为[ ]
A.6。3,1。27 B.1。61,6。3
C.6。3,1。61 D.1。27,1。61
教师可先用投影片(或小黑板或示意图纸)写好操作效果图和学生的计算结果进行对比.
接下来师生共同继续作课本上练习
小结
1.熟悉计算器上各键的功能.
2.学会算(用计算器)平均数、标准差、方差.
四、教学注意问题
1.本课教学内容关键是动手,要让学生动手作,为帮助学生中动手能力差者,要提倡互相帮助.
2.学生做作业时可提示他们可核对以前的题目的准确性.
平均数教案15一、教学目标:
1、使学生理解数据的权和加权平均数的概念
2、使学生掌握加权平均数的计算方法
3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:
1、重点:会求加权平均数
2、难点:对权的理解
3、难点的突破方法:
首先应该复习平均数的概念:把一组数据的总和除以这组数据的个数所得的商,叫做这组数据的平均数。复习这个概念的好处有两个:一则可以将小学阶段的关于平均数的概念加以巩固,二则便于学生理解用数据与其权数乘积后求和作为加权平均数的分子。
在教材P136讨论栏目中要讨论充分、得当,排除学生常见的思维障碍。讨论问题中的错误做法是学生常见错误,尤其是中差生往往按小学学过的平均数计算公式生搬硬套。在讨论过程中教师应注意提问学生平均数计算公式中分子是什么、分母又是什么?学生由前面复习平均数定义可答出分子是数据的总和、分母是数据的个数,这时教师可递进设疑:那么,题目中涉及的每个数据是每个占有耕地面积还是人均占有耕地面积呢?数据个数是指A、B、C三个县还是三个县的总人数呢?这样看来小明的做法有道理吗,为什么?
通过以上几个问题的设计为学生充分思考和相互讨论交流就铺好了台阶。