《圆柱的体积》教案

时间:2024-11-10 08:00:13
《圆柱的体积》教案

《圆柱的体积》教案

作为一位不辞辛劳的人民教师,常常需要准备教案,教案是实施教学的主要依据,有着至关重要的作用。那么大家知道正规的教案是怎么写的吗?下面是小编精心整理的《圆柱的体积》教案,仅供参考,欢迎大家阅读。

《圆柱的体积》教案1

教学内容:

人教版小学数学六年级下册《圆柱的体积》P25-26。

教学目标:

1.经历探究和推导圆柱的体积公式的过程。

2.知道并能记住圆柱的体积公式,并能运用公式进行计算。

3.在自主探究圆柱的体积公式的过程中,体验、感悟数学规律的来龙去脉,知道长方体与圆柱体底面和高各部分间的对应关系。发展学生的观察能力和分析、综合、归纳推理能力。

4.激发学生的学习兴趣,让学生体验成功的快乐。

5.培养学生的转化思想,渗透辩证法和极限的思想。

教学重点:掌握和运用圆柱体积计算公式

教学难点:圆柱体积公式的推导过程

教具学具准备:教学课件、圆柱体。

教学过程:

一、复习导入

1.同学们想一想,我们已经学习了哪些立体图形的体积?怎样计算长方体和正方体的体积?长方体的体积和正方体的体积的通用公式是什么呢?用字母怎样表示?

2.回忆一下圆面积的计算公式是如何推导出来的?

(结合课件演示)这是一个圆,我们把它平均分割,再拼合就变成了一个近似的平行四边形。我们还可以往下继续分割,无限分割就变成了一个长方形。长方形的长相当于圆周长的一半,可以用πR表示,长方形的宽就当于圆的半径,用R表示。所以用周长的一半×半径就可以求出圆的面积,所以推导出圆的面积公式是S=πR。

3.课件出示一个圆柱体

我们把圆转化成了近似的长方形,同学们猜想一下圆柱可以转化成什么图形呢?

二、探索体验

1.学生猜想可以把圆柱转化成什么图形?

2.课件演示:把圆柱体转化成长方体

①是怎样拼成的?

②观察是不是标准的长方体?

③演示32等份、64等份拼成的'长方体,比较一下发现了什么?引出课题并板书。

3.借鉴圆的面积公式的推导过程试着推导圆柱的体积公式。

课件出示要求:

①拼成的长方体与原来的圆柱体比较什么变了?什么没变?

②推导出圆柱体的体积公式。

学生结合老师提出的问题自己试着推导。

4.交流展示

小组讨论,交流汇报。

生汇报师结合讲解板书。

圆柱体积=底面积×高

‖ ‖ ‖

长方体体积=底面积×高

用字母公式怎样表示呢?v、s、h各表示什么?

5.知道哪些条件可以求出圆柱的体积?

6.计算下面圆柱的体积。

①底面积24平方厘米,高12厘米

②底面半径2厘米,高5厘米

③直径10厘米,高4厘米

④周长18.84厘米,高12厘米

三、课堂检测

1.判断

①圆柱体、长方体和正方体的体积都可以用底面积乘高的方法来计算。()

②圆柱的底面积扩大3倍,体积也扩大3倍。()

③一个长方体与一个圆柱体底面积相等,高也相等,那么它们的体积也相等。()

④圆柱体的底面直径和高可以相等。()

⑤两个圆柱体的底面积相等,体积也一定相等。()

⑥一个圆柱形的水桶能装水15升,我们就说水桶的体积是15立方分米。()

2.联系生活实际解决实际问题。

下面的这个杯子能不能装下这袋奶?

(杯子的数据从里面量得到直径8cm,高10cm;牛奶498ml)

学生独立思考回答后自己做在练习本上。

3.一个压路机的前轮是圆柱形,轮宽2米,半径1米,它的体积是多少立方米?

4.生活中的数学

一个用塑料薄膜盖的蔬菜大棚,长15米,横截面是一个半径2米的半圆。

①覆盖在这个大棚上的塑料薄膜约有多少平方米?

②大棚内的空间大约有多大?

独立思考后小组讨论,两生板演。

四、全课总结

这节课你有什么收获?

五、课后延伸

如果要测量圆柱形柱子的体积,测量哪些数据比较方便?试一试吧?

六、板书设计

圆柱体积=底面积×高

长方体体积=底面积×高

《圆柱的体积》教案2

教学目标

1.理解圆柱体体积公式的推导过程,掌握计算公式.

2.会运用公式计算圆柱的体积.

教学重点

圆柱体体积的计算.

教学难点

理解圆柱体体积公式的推导过程.

教学过程

一、复习准备

(一)教师提问

1.什么叫体积?怎样求长方体的体积?

2.圆的面积公式是什么?

3.圆的面积公式是怎样推导的?

(二)谈话导入

同学们,我们在研究圆面积公式的推导时,是把它转化成我们学过的长方形知识的来解决的.那圆柱的体积怎样计算呢?能不能也把它转化成我们学过的立体图形来计算呢?这节课我们就来研究这个问题.(板书:圆柱的体积)

二、新授教学

(一)教学圆柱体的体积公式.(演示动画“圆柱体的体积1”)

1.教师演示

把圆柱的底面分成了16个相等的扇形,再按照这些扇形沿着圆柱的'高把圆柱切开,这样就得到了16块体积大小相等,底面是扇形的形体.

2.学生利用学具操作.

3.启发学生思考、讨论:

(1)圆柱体切开后可以拼成一个什么形体?(近似的长方体)

(2)通过刚才的实验你发现了什么?

①拼成的近似的长方体和圆柱体相比,体积大小没变,形状变了.

②拼成的近似的长方体和圆柱体相比,底面的形状变了,由圆变成了近似的长方形,而底面的面积大小没有发生变化.

③近似长方体的高就是圆柱的高,没有变化.

4.学生根据圆的面积公式推导过程,进行猜想.

(1)如果把圆柱的底面平均分成32份,拼成的长方体形状怎样?

(2)如果把圆柱的底面平均分成64份,拼成的长方体形状怎样?

(3)如果把圆柱的底面平均分成128份,拼成的长方体形状怎样?

5.启发学生说出通过以上的观察,发现了什么?

(1)平均分的份数越多,拼起来的形体越近似于长方体.

……此处隐藏19499个字……个圆柱体积,该用什么方法?让学生说一说是怎样测量的?又是如何计算的?

这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。

(四)总结全课,深化教学目标

结合板书,引导学生说出本课所学的内容,我是这样设计的:这节课我们学习了哪些内容?圆柱体积的计算公式是怎样推导出来的?你有什么收获?然后教师归纳,通过本节课的学习,我们懂得了新知识的得来是通过已学的知识来解决的,以后希望同学们多动脑,勤思考,在我们的生活中还有好多问题需要利用所学知识来解决的,望同学们能学会运用,善于用转化的思想来丰富自己的头脑,思考问题。

板书设计: 圆柱的体积

长方体的体积=(长×宽)×高

↓ ↓ ↓

圆柱体的体积=底面积 × 高

↓ ↓

V = S h

本节课我采用的是图示式板书,这样能让学生清楚地看出圆柱体积公式的推导过程,以及两个形体间的密切联系,同时便于学生对于公式的记忆和理解。

五、教学效果预测:

新课程标准认为:“数学教学是师生交往、互动与共同发展的过程,教师是课堂气氛的调节者”。本节课我始终注意以人为本,从学生的兴趣出发,通过动手实践、自主探究、自主发现、使学生充分地理解、掌握圆柱体体积公式的推导过程,并熟练地加以运用。总之,本节课的设计,我遵循小学生的认知规律,由直观到抽象,由感性到理性,采用分组讨论,合作学习等形式,让学生参与教学全过程,增强了学生的主人翁意识。并用计算机多媒体教学辅助教学,激发了学生的学习兴趣,提高了教学效率与效益。在圆满的同时,我也觉得会有一些可能出现问题的地方:比如,在具体的运用、实践中一定要注意和圆柱的表面积加以区别,这一点我在实际的教学中会多加以指导和训练。

以上是我《圆柱的体积》的说课设计,谢谢大家!

《圆柱的体积》教案15

第二课时

教学目标

1.经历同桌合作,测量、计算圆柱形物体体积的过程。

2.会测量圆柱形物体的有关数据,能根据圆柱的高及底面直径或周长计算圆柱的体积。

3.能与同伴合作寻找解决问题的有效方法,能表达解决问题的大致过程和结果。

教学重点

能根据学生自己测量的数据进行圆柱体积的计算。

教学难点

给出圆柱底面周长如何计算圆柱的体积。

教具准备

学生自备的茶叶筒或露露瓶。

教学过程

一、测量茶叶筒的体积

1.师:同学们,我们要想计算这个茶叶筒的体积,应该首先知道哪些数据?

生:茶叶筒的高,底面直径或半径。

师:很好,那么我们就来亲手量一量你们手里的圆柱体的各个数据,并计算出它们的体积。

学生同桌合作测量并计算。

2.交流测量数据的方法和计算的结果。

3.刚才同学大部分都测量的是茶叶筒的高和直径或半径,有没有测量茶叶筒的底面周长的?如果有,就说说是怎么测量和计算的。如果没有,就提示大家,如果给出了圆柱底面周长,怎样计算圆柱的体积呢?

生:利用周长先求出半径,再进行计算。

师:你们会不会测量茶叶筒的底面周长呢?如果已经忘记,就进行一下提示:在圆柱的底面上做一标记,然后把圆柱体在直尺上进行滚动。或用皮尺测量。请大家实际测量一下底面周长,并进行计算,看看和刚才计算的结果是否一致。

二、巩固练习

1.一根圆柱形水泥柱子,它的底面周长是6.28分米,高200分米,求它的体积?

2.独立完成练一练的1-3题。

三、家庭作业

1.练一练的第4小题。

2.①一个圆柱的的体积是141.3立方厘米,底面半径3厘米,它的高是多少厘米?

②一根圆柱形钢材,截下2米,量得它的横截面的直径是4厘米,如果每立方厘米钢重7.8克,截下的这段钢材重多少克?

圆柱的体积

第三课时 容积

教学目标

1.结合具体事例,经历探索容积计算问题的'过程。

2.掌握计算容积的方法,能解决有关容积的简单实际问题。

3.在解决容积问题的过程中,体验数学与日常生活的密切联系。

教学重点

利用体积公式计算保温杯的容积。

教学难点

计算容积所需要的数据是容器内壁的高、底面直径或半径,如何获得这些数据。

教学过程

一、复习旧知

1.求下列圆柱的体积(口答列式)。

(1)底面积3平方分米,高4分米;

(2)底面半径2厘米,高2厘米;

(3)底面直径2分米,高3分米。

追问:圆柱的体积是怎样计算的?(板书:V=Sh)

2.复习容积。

提问:什么是容积?它与物体的体积有什么区别?我们是按什么方法计算容积的?

3.引入新课。

我们已经学习过圆柱的体积计算,知道了容积和容积的计算方法。这节课,就在计算圆柱体积的基础上,学习圆柱的容积计算。(板书课题)

二、教学新课

1.教学例题。

出示例题,读题。提问:这道题求什么?你能计算它的容积吗?请大家仔细看一下题目,解答这道题还要注意些什么?(统一单位或改写体积单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。同时注意是怎样统一单位和取近似值的。

2.注意体积单位和容积单位的区别,以及它们之间的换算:

1立方分米=1升 1立方厘米=1毫升

3.注意保温杯内壁的厚度应该减去几个才是内壁的直径,高应该减去几个厚度才是内壁的高?

4.学生独立完成。然后进行全班交流。

三、新课小结

1.提问:求圆柱形容器的容积要怎样计算?如果知道圆柱底面的半径或直径,怎样求圆柱的体积?

2.计算容积与计算体积有什么相同点和不同点?

四、提高练习

把6个这样的保温杯倒满水,大约需要多少千克水?

注意大头蛙的话:1毫升水重1克。

五、巩固练习

1.拿一个水杯,量出它的内直径和高,算一算这个水杯大约可以装多少水?

注意:如果给出水杯的外壁直径、杯壁厚度和高,怎么计算?(内壁就减两个厚度,高减一个厚度,因为水杯没有盖。)

2.练一练1:求水杯的水有多少是求水杯的容积吗?水杯的高度与计算容积有关吗?需要用哪个数据来计算?(杯中水的高度)

3.练一练第4小题。怎么钢管的体积?

1)钢管体积=大圆柱体积-小圆柱体积

2)钢管体积=钢管环形底面积高

《《圆柱的体积》教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式